UOP staff
ΜΠΑΡΔΗΣ ΓΕΩΡΓΙΟΣ
ΛΕΚΤΟΡΑΣ ΕΦΑΡΜΟΓΩΝ
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wgARCAGQAZADASIAAhEBAxEB/8QAHQAAAAcBAQEAAAAAAAAAAAAAAAECAwQFBgcICf/EABQBAQAAAAAAAAAAAAAAAAAAAAD/2gAMAwEAAhADEAAAAfQhgwzSYZgBmRhEogiNIAQDSZAIEEk0mOr7CCGolhmagKMxAWBJmAiUYglmNgwElwhsLISSyEhRCAshJmDfDz7IO9jlOcO9L52Z0NXI+thpMgiMgiMgJNISTQBBoMjEksBuIcDUlYoyUAKIIKMQFkEDAlLiQiUQkKAlKyEkohIUYg1A899u4/6xPNhu6gw9lUtlV668f+uSUAAiMCSNISFIA0bIcZrg5v8Ak3KcydmuvPgO12fASPZ+r8g3p6jXzHpgolAIACUqAkwAiMCQDCJQEBRBAGJMzPN3YuP9xMKhyOQ6fs/Dy+9C+fexnQgShIMgkLQIbW0NsL4oVnnEllcLOrDVuunnnRPpfHnGF7asJXsvz16IFGDCIzEBQEpUQRKSJMzEkoggZBAwEZkedfRPJTHen5rdj3lH1XzU5X2K5inUlAwgohCHEDDbzZA8OeyfBo1YVpFhXyVHpHr3n/0KRFzllNn9dHMrqKa7JRKAkKIIjIIjIIlEEAAEoggYEgwEDUU2szZEqTmJw1dvTTIiCDqXM9RzQ7RgdNmBnbVeqJDTzZC+f/0F8SnPpbd6VOgctjp3ccXuiNkIGYL7UcN6YSefzHjsYUQkGAiMBEYGwtIlQIMACVAxAUAiWBNZXWJU2NbZm0e55oTOLqyNPlbdJcT810MyHQeN9lGkOpI3l31Pyg4W53+xPHll6O4QeoHo4M3lty2eefQlLsDMV+shmoC0iQYCJSQgYCSshIUAgZBGRhAGAjAi90MA5PaVVwWFxnbkwe4yPZjlNRMYIO95doyR1Hju3NUkgEw6g5q5b5ssOedSwBp7jJaokri3JGysrnRpp3DtQegCUYglpCJaRIUQklEJCgEDAQBiTAADBuWObwDRWPONCT7SvpDRbXh9maHQ8b1hJRBqi20HMupmlCQG2pIjlPUfN5tstq6UsJGCdOhI53dmRn2+jOZ21nPOwhQEkohJKIJJgIjAkKIAMCQYCAACDZjOh8l7iYHqPLuoHHtNVbYxsOVEGeiYnUmObzmjIPXuR9aDAMSlccrOZ9LyJRpsak5dk+yZQwe0wpHXXOK7Yn6/IdZOiEZBEohAUkSSiCAAQMBAwEDIIGBviXcM2ZnoUxBQdPy2rOa7eDbnMW9ckwG3J8zEToMY5f06ORqmMDQGvyjKjVWeNvyJG01GY+Tss8ZTN9bzx586tA6ab52vnhkcceTUWoojISS0iQpIAAAGAgAEDASHCNoCMMyACMgiCQEQCrmOYGgx0+eVcmU8VMm1rxzT5yaa7PaaMZ9cdozlJu+XFV0vk5HV7SCo1KKZsXoqSeXCUrEkoCAABKgAABAwEDAErI2ASBRtuBhICSpIlh7nBTMpeJs2DMCg2sIckxrAqhcRCfnpMUrGtVnBnF9HwYl89kPRbmgF8l6L50O63/nP0QdQNKgiUQkjIABBgAAAAAAAA11DdZoZubLNGpBEKSlBA5NtcgKlxLIVKakkduVVEiZHBYqQgVGnLNDVU0ooqi2QYHs/Fu2GZo72CYDgfoPOHF/Z+e0ZrDYfCSohJGQCMAAAAAAAAABrMvpc2TGZc8eShscQlJz6sWyPWUVZMeTIGKy6pyvucV0EivRpw3IirF1soGXv4umOK9d4z0Ev6m35uaDZ1VuY876IT76ptxAMhKVkJJZBAyAFEEDAQMFi7UaUNIbA2TI8TIOcGaCxRJbBZVs0VCl0xg+mcu6cS1oWKQ6RCRLbKTXZCEZiw6JzI6Vyzf8AOzets1Jf2dTYj+mzejCJSRJGAgDCAAAAEAAyMFlPNAG1NjfJeieWy11mRzh6DXDkFk5Xzg1rdIFfcUxzrqfOulEezqpws2XQjEcg5vS5IqX4rpMqc3jz0zaeNyPWz3Hq47JvuLdoFoWBCFgSAYQAAAAAAAAL9JGE2tsy3mz1l5KLajTtDdWU2lLadVSixKAySsfoMATt/jNKOTID4+/FkiYcyKQc7eNGeaudIcIx/cOFmer58cmzIHTzp3RMBJOmk26JBkJBgIjAAAEDSGZAulVs8NtbZnPK291R0e3NZks3qsyWkuttynhKqyBV5zRGutKGzJi2mSROqZ49DW2QWJKCFNbimg86ensAeZ9X2TnBoNFndeSpEOMb7Sc56MJAAkAABpAAAEZAAB456r2zjB2CT49lg9heefRY4ZGZ7M6mkEOUrY4VHVlTYLYLrS4PZFlAQyT5ueshRHYFdMupJmL6JKCtq+6IUazrhFVV8yKDMytwarsXFO0DxKSERkEAAAEGCUJSqSWbTrJReP8AtDJy1PsbBGZ6v5mwx7Ky/PtOXdOu+ILNhaFSi0Ihu2VcNPiYV77k8DrgI8a2y5oGMrMLV2jWWsgq4vZHIIBued5kzc9hxG6EEZBAAIjIBOSCFJWoN5h8TjPOsET698i+yBaDIRn79g5Do9bhyfb5q3F2NXMEWWYuyU0hIUioklxKqIJom6xgnVAwxQaTFdhKKfRWppce7JORZv1NzU530C/6mJWZCQEgORKIMh5AtKgRTUgW8y8ebvSHmP0geXIMfuJwyv8AT1geQ4vtWSeIvQHYIJhb7PSSahhRX6nnm6GjgMkx2JVmqhc3tTQZ2juCtZ1RnON5U4I6nmqy+KHTuuHcVRJYaTSGhyQNvOJFAASk0izSBpl5gfcbUeHmek+mzg/oBYEpWgQkJCQaCFkduk5i9pcaVtlgrEuKtcYj0GytCn0mibKu/j2pDTYRTK1+gglVePTjNs2kA6baUlyG/HfEPx3x9JpFGRiEqSLSCEsrZJKm1mV2pkElaAkGQ0lSRtp1obSEEHM6ihM/fPmQI9jFBbMWozWz2BUtKBynl0g1HccHpcGSU8aTBOhaLI60N+O6G82ZIQtsdNJiUGgcQ42JYeYH1pUf/8QAMxAAAQQBAwICCQQCAwEAAAAAAgEDBAUABhESEyEQFAcVICIwMTI1QBYjNEElMxckNib/2gAIAQEAAQUC/Esv5ieCZt7G3ht8fbNvHb8Ww/mJ4J8Hbw29nbNvy18Fyd/M/A2+Jtn/ACDNxrX8sjvtXvVFh/yHIzT2rAundS6nKheptalZ2XwlxfCZ/LxO+J4J+Ft7dRDCfYj6P4QZrdNr5vTbJ6Y0YX/0WvnedzSPdG1T4C+CrirhvC2lnbMsuvaxJWo+sm4jwekppRl+kaQ4cLXpsjQ3rV5G3/H02v8Am+2a6+/xu/o90Z/6PVrvWv5rXq6zjn1GfgKuKuSHkabu9WhHesr+TYKpqqeO+ad1KtIq+kGwKVWa4hTsEkMfZ2+Lt4V0xYMtj0hE87rz78xqWO1pbRv/AKKYXm77WbXR1BQPdel9tcVcVc1hrJtlHOo6u/veC9s28UzTBENu0mzfwtvhVkVJ05r0dssva+T/AD9Ro2RbwaTSf6fKA+AW2sLCNZW2h3erp/2V8Fws1zqb1aUiQUp5GdzkQ+mnzWp06llkb0bsCMr0fNKzM9HsplHNLyI7j9O8w5o+gViYHyT4e3waiQESy/W9Sq69VCu9Df8AndRO9CjiRXZz9hUSqnPRy/ygJ7K+C48fSb1VaetrlsOZuqC4bh4n1aGjgsLZSTiSZxJcNrnjlHHcems9Ioo8Wfw9s/QNtg6Ctt9TaVn2k7S1a9VVGp4L9lT6a0jPrrjWVBJuw0bp+bSv+2uaiIwpnxUHRXZVxSUgaY6xaGckxFb94UHbF2THFEcU0FJaK+kQ0cj+yvx/1FNxm2KTUV13Lkzri2kw536hnbx7aS5W/qGaijqOYJsTEkQf1DOVKmUU2BJu50eR6/m5SS3ZkNcXHU3C572QjyzhtnTXILIoxo/dQab2Qy4pM1RChk3rmudWNIZlDf2YVUDQ06e/O9lfj31YzBGs709L901J9yqKiNJgWMFmDU1cduROuYrcadHc6WmPlmmD5V2pI6tWNTWxJsKNEahAuLhpmuq/yGomkwWtsryHqG0nU0vUhXxDPbNRyXlb/TrJRHayqU9LUiV2are5ytIW0aRM+Lt7erPoqvtNN901L9y0/wDarz7XR/dNR/dHHOGlmmucDSbu+apj84mmJH7mL4FnpWi8ZtLomTNhytIWUPJkV+udr3ldfhntGecyUQq4+4+4sCEaW1aZo3qKu87D0PDSNXfiWtt61Sp71VN901L9xh3kiGyk92xooUtYUmwmLYSZhcKGE1/gtLucbC1BHq+kdULPxVM19V+cgMtp1njaYcv6KNbRa+lODKij+w6u2LGUlMeKJBSU+fBpoX+oMRpY8/8AEHSuFAbr6in+6am+41FNHmwZsBqvp4MVJsxNKR+eqUFootu3GrqM+nZ6nk9Gu0uz1pe/iuGCOh0/JTZLoHGqZQSoM5lQnQJBGBe8qYUbqp0BaCU5vJduHWDr7obSR+I3/rsvt9R9x1N9wqr1uDFetQsqumX/ACmanPqWcSgdlw4rnRl6ok9WdVXnqyNVXS2T3gvhqCC5Iaq7FmzRxltiPJ/fkQN2z6mb8sEk43FyEQrC/wDMZMjTp2aKivwbT2ds2+MHYZTfXjw9PHGlWtMthITS55Fo1jxYdAkKVyTafSNTZcFpqHC/TLLpv0caS76jgplPWsRD9hctoLcSzeNxWgecYcZf9z1sjBNWIuOrP6YT+tMmRmJyN2bV6xE0S649c/C2+Fpx/pJVtPzjksyIJhTSAh6ZlbR6j3n4cF2wLT6K7KjQSlSmqR+sj6b/AItEx5nKyuWyfpasqxr2HSRsJiGzq75jJbIVbs+g4c4SkhZJ5uLJSQkWIj2M2DkRuznjKDRfl3rD8Mi2yM90oemGenB1V/ObRDYF5ayRTsdOj0uv7+m/u9snq69tiQqvTfePpH+bv6r1F7NgfFJcJHMjkqnMa4paxlB6T1do58HW7IelGmdVp2IMhHdPtoei/wBm1/CXPSLbS4LP9UqgdZqn+ex/o1K0jVgjfSo9L/79OdrfVhisp5smdPwo0mQGk/5Ooi81cinFPF14GRl9KdWyv+yBNI8LzptuOsdQ7WoWUhRBZLypK2FnIjrXakHgkuXPPSdA7WD+HcU7FvFjsFJzSUr9rVX86P3j6r7yl4+qKB8YsrTZAVpJlBKuZl7FmxNM/wCvSx9OZDsAS0rrtqyPHX22UlagRFelOSloJCC7LahRG0bVoXIzUoHWHIbvRFwJdA0/j+lvLNS4j3X0FVwZIgAtp+IqZT0RVxV9A5XzrWjK0faHpN2tIlm4cXlBjadbjHG021Fe/ScbGdLxWVhUzFcjWn4sfP0xATAbgU6yb9x7Cd6hjwVej3bQgdeqHJbEuKYRwDliDu3IguQ8acE27E1eSvgpKumoHqqxamA5iLv4OvI2I2ja4BI4P5cqc1DSwv1dFSNzGWUTFjoWdFEUN8RvbKeXsbIo2RsrDe2788sFSM/Mc4RdJyfMPaqfYmMD2yNLcDFnCjcgOs0kY0KICgq/P4u3xLCekJl14pLgsZ0NxFvs37qmwLmEnTxs8FdlUUsI05kpcVl/lj8gWVkNtRs1C/vFoSKDV6cZNs/kqFjRe8/aKBtahkIhyymoCKI/kPOoy3KknMcFN8b+Q46GI4u7aqikPNDbIME90r5nlHtV6mdqnwsg9XQXPWT2oGRgpYhyZZhgUDnHgSnvcNFx8uLNZr4IzknWtCTek7QLg0/C377+zvsltYeZcRUwE3UO2J4OgjqNqioO22+2OtIeceOTIA3EPTejjhQljFBkS4frRlQPnF7QIGmo8+Vfh0JyFtlhIRqDUTmWHL6TBfXQMZI+nk/BlSVNVRMivqq+xYO9KGz3PimAOImIHYOxLsBuD0ybVFRUTwMeWE2oFXWiOJqGOhZDPY9RftS4JdVmqcUKy2kFPhonu6jJWKeuHd+Wu8nTbXRpU/AJdhjjzdUeQtrxd9jUEnYG04A372CmCi7/ACTZCGUXEGT67LeyZsmwl3FdsXvht4FqKjt0X7eCM2JWjs9plEcgTWtoEEumuvxKxbpfRxLPGfR5Vg3HfWvRp4Xk/A2JhwppKkVvk7475cu857qdme2Aub7+CLtkkU3qHt0dbVFD30Ntcbz6cP5zIgyQr23lKO/yiQy3naUeTrWpftN2jLMSOvB5bWOIPavZR5qQUvGd2z+O4fTFOTzvke4AjYKWcs3xcn97Al2Nr5r7ppiYW2WAKseHI2mkfMB/bX55xXCXcRXdCL3W3CZfnQU4we0/Tcjp2t4nE2S5gzUMMDsDRuC08sdsWzTYXfjzndyht8R3zfFXN83zfJHewTYi6eLuuNKu6dsXujiboP7FmJLso8sEtsJFxewruiqipjp7Fp2WktqbAcrbutf6U++IVfj9VxW0uHAKrlv5EYcj5wQyGM6cr5fHbQn3fpTFwlzfOWcu76f9sP8AZumd0zlsokijui4+pBkxd7Ne7TDu4kPI0XD2z5qfyfHdYM31ZaaqgARuILYXDnUGvs22s/UMLC1ZD6kdxqWgkTSs2PUlfHhNcG998XwP5ao1klUfrvUKjVa9flNoJIoJsvgn0Am6KnJXlMcQupNTs2J+8pKic1LFxBXFTHwTeRtjtlIdJzbjIvjjVOlTjOnGWGmNrBayXO95mdyzro7JD6PwrWX5CBXFukh9WnpwkjcWR5ppF774hLtz5I0O+P8AurIPtWNj190wt0kGq4CqmLvi/SWOJsLoqSlHAJLwcTnr1IZkQMxrGW4a3M1tyjee6E2/cdsNLu9YB7j+CuajaWRR1b3Gv6cYDtjIYERhYkBcT6B7Yo74n1SFyc/xGnaRZKmOcubvJMHZM37EuKvd5eKEirjzPVbOO4UKQyRs2fuQ4WJ3cWykuBRJtb1UYYcauf6rPgvxN/FcNN0uE9Q6g9etb6Z0zKuJ9gOz/L3Wk3Q/qblKBPyCElkdZLl7Z+EKsgvfD7KvcW9sFe2HtkhPdBE4OAghXMBKb1BV+qqO8L9hkuDEVUR5xoXj0pSmwcY+4zihy2XUeb+EntLl7ZjU1tRBdvrlqrhsqg7ZaJ+6HfI/EckIio4e6ESoLErjIkt+ZtHcaL913vib7NHsZdl5Y4Xd/FP3DXcaN1zNfx1dq50JZUNyukNDpiq8wXS6KNtF02/dQX25CVMjkPxYk6PPb3z54uekS28xN9HtR5aF4WqbONhyJv3ScFXQcA21OVkuSrdlBXd913fI4EjXFemi4g7Kh7CJbopJh+94IKbRBNobcltK2PpVxRk0zsdIMSTClyDVoorqi024puWrjbMahc7/ABWH5NZIqvSPIZyr1DAtht7EKuBCjvaguY8cYrPhbJ2D6m2yLHZgsIV/HdVzoygtak1l1pKLavKbvWXbqr0z7KBookSbdTjnJBVDVVRoyHyyhiADQgqu4yaNI8/H3RmM6sqpZfRKFmJHl6mejSHJEiWtP1GIDS8mviWdHCthtvRu43kuFLrHpV9OmwvR9Lr4j4lyHfwtv9baIIz55oDVQptykXI/nZAsRuRL1UciPK7NICUR5CO6KoKoKnvAjDi5HgngRETORNErLjrrjewxyQMQwIUjtv45SiOTPXcZb21v+nG05ZSSiUzdZgvHJJhOLPwd825YjPgqZcFGbrokQ7WwtNNWFQVXqSwqVqvSLGfyLNZmt2KbsMOoRcRVyZIfmmxBajosfzcgWRBCb3xuGDebb50FLEgizhtdRWYoogNDtnFcP9p9HAJHE3z5J8wZneXz1wzgWAHi9F1Jtu1EOQ/56RWJ5mYibJ7e+bKuIztg+K56R7fYfRxUYQ8kttE11mlroOxr8jzJVW9p/V8u3VEI3X5BPWPRRHGF68rgmGPaOPf6sVnGGuC/uErrxALZbYJ5t3RcuTRG2pG2eZXFkrjTwksZtp/JsGLknhBwNRmiSpSzH23Fk5puCjY+2LalgtomLir2DwffbjtuayqBWS6/qG6rYLddBxfCzoYNsLOh/U1hBDG2xZJVRQie5ITH3eLSCiJ8sX540irgAiYXFF6gpjj+yddcslR2CxqFkSSYfMJRKodF0griJLEWGTs7aMhJPRcZeN/KOnenm02LLXso0q4gIHhti5/QZ/eoNRv6gmHp2yGNp60GmtwMXG/BV2xXQHH5sbp8lTHN+DBbtNqnWRceP33jPk2vvOvgBPWccMjuK6hrsPWNFI9s2J5ZX/QKZc95VmbZ2DcWRDSG6GJFe6ZN2ErGINU0djpyBZhL9HWUuhWoZAItj4/NRZ3wRQcXP7xfmWb9gz+/R3UtzJ+a5r24F8xrC2jxj1bbuYd/YOYdpKPFddcxIr7mVTxyK3vxiEnRfRM5mgTHlF18VcEPcN1RVRBtleu4S9RBBN3cetmI+O3Lh48+/KVI2WEfkzWWcJume9IVfGV3WlvPw4syZlKwEF/5p7Cblgs99tvBPmuf3i4uLg5/eg7tqpsX5seMxqW39eXFdoGtSCGi6dvB01WN4FVEbzyzY500TJ0TzLKoTZo7xzqci34rMe3khK5466qYMhcFRTJNkDBytWRGSW4cchMR1PGoODBXbyyokthVF+j6slurabyJBTCb4K12WKXON4d1zgmD8s/vwX2CxcTP7ko0L4ibmaN0Y75j2F8ZMUJIyK11vFXpGZ+4DIKqyE2OYKYVs23i25uY5C8+5X00JpryYi1GjgJNgO3HlhjsMgO/luR+X96JH2ZNpN/ktafKFi4OIvvJ8s/v2VxcX5Z/egqf1hbDFZEtvFcXx3xV8LNtCyUpCDyuumEVx9FqdsWs2RqrJci0/vswwZR9vGG0RQDOPHHSxwUVU36/lyxod2Hk2UvnVfwt/Afl/fsr4rheCL3/AL0nT+p6b2F8F9mYPJlxlNvJD1W4gtCo8i6fuMs7I00g4SbY73cbb4YOEqKhucVcLngfWr7nBrswpKmFlGfKN4N/Lbt4J8/BfFcXFxM/v2lxfBcXFXJPdr6xRUDFc6gKXTwQIlaZXlw2xxMVrdU+nfOWyyV2MeRmLZc2hVXOJcX/AHcU9s08u7fgH0J8sTF+f9Yuf1i/JcL68/v/xAAUEQEAAAAAAAAAAAAAAAAAAACQ/9oACAEDAQE/ARx//8QAFBEBAAAAAAAAAAAAAAAAAAAAkP/aAAgBAgEBPwEcf//EAEUQAAEDAgMFBAYHBgQGAwAAAAEAAgMRIQQSMRATIkFRIDJhcTBAQlJygQUUI2KRkqEkM3OCscE0Q1NjFVCDstHhNaLw/9oACAEBAAY/AvVD5f8AMneX/Mn+vfuIf1TQYIqE0X1dkLHjIHVJX+Fj/Mtw+PczUqL1BULGwiXeCtzSiiwz8OI957Wb0z/XsPh5CQ2R1DRAiaWyd/DanfSe8dvQK5eWqwv839EG+5GFg39JR6W6kdqnXyUdSvJyndUmO2RviuLCuDviVIY2xN66rNiPtGmvgt60ZHc2dPWMF/E2H+GFJ5H/ALlhfn/2lYrncNUkYsI32Ubxo5oPo3PcbBRveQaE0yalOq8iM+yqcuy7hzAj9U19W7v3KINOeKTog4c/VYcQG5926uXqomfUgM7g2udf9Jqf9GljzMa35arC/wA39Cn888/91iKcwD+iwb/9sejlwcNS82JI0Wd5zfPZp24st/NN8vVcPhy7KJHZapkgxbzkcHUyr/pNTcTHPGxrqijlNjJ5hJIyM5cvJYeaY0jEoc4+FVv8LJvGGMAnxUI9xxb6L6s0nNSuVv8AdGR7rlZc9OpQpe1dgbxZj0X2krnHqqQvyFfZ0k8VlkZRFlEJphly3FfVsJNIaMY8Elf4g/kKY4aGFpUPxO/qsa//AGymwQtzyu0CZ9ai3RfpdYqP3JK/j6FzjYAVWImB4a0b5IBWsQKeaA0sgjILmqvbZYuXGwP8wt5loa1QLeEptyban1XuR/nXci199RywNYWiJrLupdMw+IAEgcTY1U2Hw1DI+mpoocRiGsEbK6OqsN9WDS6MmuY0WJOJDBHIBTK6t/Q4wsaXP3ZAARadRtHgtaIx0zRuuPBA7Lla/is2nkuEUHUplDW3qtnR/lU04AbPGL9FDE8syu1oEY4y0Myg3C70f5VjJnFueMjLwrvM/Kv8tw6UX1hthlzIcbPyqOR54+dE+MubwmndXfb+VOfKQ5wdSw2kHRYnl9oVZXGqLQr951lEwc15dV0WV8jcyyOlHzWaB4c3wKkndroE9stRA8ZwHeqwGEEZq1uvpEeCg8/7J3whRyyR1ea3qsUIW5c2t1HHIMzHJ0UQysFCnu+45AJ7fdkWfk8VTHuirJo66yQtytJr2MQA2jXnOPmufgmuedLBSOIBpeiieKAPFEx2ryNdm5icQ555L7arzrVxW5MVHHmE4seTG5NilH2cXFxKRocS82bw29VwvmV9JfCsN8SPwBR+Z/qp/JQJ/kEB7zqfqp5ObXNWIZ5FMlHsOupYSdeIdnCTe82i3rp24bed1pCDCBPFWz2FZnAt8FCzWhqoz4bDIWZn8gnb9xhjpYgVonPmcZW5u8UB7PIqV0bA5+Wl1ldGGyNPz9ViG7MeRfSPwrDfEv5AhEwMyDqFjHS5attwps2XOWeyjNkyE+ysGz3nErHH7yLfeYViGutwKAi9bHs4eWlRBKHO+HmostMoFSqh1a6hOtx01CY5x4c1EzZULiaFUCjBqUCKMYFbQq1o3DT1X/E//VYiNlTwkknmsP8AEv5AmyyZsxJ0csU2KtCK3KZE52UO5hVdNIR0ssNCwUaxuimwjonOMleIKA+OVZa3kOVPmPdYKfPslrhVp5KTD8qVZXmEeE5hy8U9vtg3TmewDUJtSc1L7Kc1QrpRAS1EaIggYyNvvuuUx0dMtaH1VvksR8BWG+ND4AhC6J7jWtQsblY5mRvtLD+ewt91oCGIErWg1sQondHhNiGkbf1W6EGdxNS6qezdiPK2uvZbPh7zw3p7w6LhdcWex2oKe9obGNbLMKZVTkgEBsEdb6lVjaT5IuawsvYudRbqWjmPGax0PqoHgpYq0LmkVUUhmacjq0ohIJWs4aXVsQ38qxUBnDt8Omijm+sg5D3VWoopJzjGtz8k2AStfkF3VTntxlQLmlLKSY4+5u42sv8A5AH5hPkhn31RlPaMsP2ZmFXU6o5nuc3on5tHKxTQ6vO5WXQqxzOropHvdqdF+x/R00gBpU2T5poPqsTdSSEQ55flbr6ri5HvccrK3KxhaXOdu7AnmUGYhxDqV7yxDpdMgc3iWJYXVy8d1icTzjjc75p+7ILgMxLyp8Of3ckRBCGGblZJccSxskpYWuhLeFfSA/2/7FY2CnehW6ziN4FbhSNc8PzGth2S46Bb50hdHiGGngVRGwIK3LxToqniYzVMDTqa06Jz65Wit+pTp5mgXoAsrMVRvR11kxeNzRc26LEvg7rGBvquLvd7Wt/VGQ6yOqmfAmg6FqxUXVpYsVIdZA7+ixP8JU+65CQaZhIsQdQY6rH/AMP/AMqY/wC2ujc/6HtRtNmSOyFFj7Pa7hd0K3b+GTorarPz1ohxuAdqhR2ZxNKVW71ynSiPs8sqJkA3Z0LSvP3lPE0WyXy+qYePDvdE2SuZzdmHLNMib/DTPhCz/wCo1Fo/0f7LE/w0euVyib7YbdOY+7hDdSHD1o0cVHUU3XIhFGOIZW/NAa27FXuyhSOZx9KdVDiaZc3C8dHIA2I0d0RjnIzcj1TnOAujujSnIBGtcw51Vakv8CsrwSAiSRr3SskOFfKDzaLKSfE2ml9n3R6o6DENzN5HmE7J7LC5S4c+zxtTPgUXwhRfAuI5W7rXpZYrNcbs3HgsznUJacoW+kNId5+gWIiicS8xnksd/D/8qYnutjqvrkwLgSXUCcyNjmlorfZV7w1EQj+YrjfVPwb/APMGZpX1bNSXEvt0zqh72lFllHkeYQbJxMOklNVa1Uczb/dRc2Xyqt012e1akJxmw4diYzq5Ua0NHq0jpZGyZm5bBb5s7S24y05IP327o3LSiY3WgomuMxjoKWCOHrYsyVRIme6rC38UJGzSVAIX7yVEh0lwW6qQRl53goalSZA/jblN1+7d+ZOfF3yKG9VSLgCzSOLj47MzSo5W0qw1WIMNDHNR7PuvUcjyHPplkLdKqqLHjM09VnjOeH+mwj2Oae//AC420THRDglbUgdVTntqV3SszDmHrn2h+SLYhlHU7OJVC6FU5bDhn9yT+qfBP3X8Jr+hTo3ctlOvJUgjeWe0RoCnyP0aLBVpdz9Oqw+EhxH7UJMzhG7u+a1qeqvcKpVWVeuJrgfEIcx5+t19s6BOfIb+Kr0VhReKvoq7QeaZL/mMs6iz230eviFTQhMqcuY0QyP82k1TmjQ3T3RM/a3sO7J5IMlr9Yl4iXa7QToqxOLPhsqOkz/G0FNDHCM9WBAE5j19ZLzoEZDz02BeCsFR2zRaVGwV7p1Rw+EbWRwzb14sG9AmY5wJLvZHvJr5dCaZeiYIyePqhXooSPcCws+JmyVtTmURsk+Erd4vACdotVrkD9UmgkPRTuh/dM8KetbtvcCtsptqNQtdtRYriX1aS0zf3Lz16LEfW3cU4puho3xT2Uo5pWQ972CeqdC5tHtTG9FBip2lxYBlHJeDhXZiHdGFObPgo8VmOriQQmjD4R2HkGv2mYKBwFDIS4+pFjTRo1PVcx4rI6/Q9mV3OiNbqvYoVdVGh7NQhHIb8ihM0cQ1QrahTZbcQpZO8HoSNbmI5LC4l7Qx5zNLRsxflTY5YNnSMeok+CYDzVKWVOjuyyEe1col22+2q5FZdlNtrOW5xHyKpr0KEwHG1Tt5d5SR9HKZuYO3eKd8qo8AdRQwYeMnEOPcZzCD8TM2EdG3KymMyO99xuhEW1Y2wVR6hREe002Ks0NceaHut17NPdG3XbdHo4J7ObSs3Yuqqh/FPw0l5I+KN3vDosS08q2+Sl5AtU8fUBy+k20FWyMfZfu6uomzyEVdy6BcNZD0aKox5JInfebRf+1G3n6gXHQL7ziv3pp5LK0UHZf5oLTsXWdh4m3VRYPvtr2Wv90o4mPuvHF/5WJ6tsmDk4Fq+kuroGn8Csh9qybwmQ9XICwbRPtUKxAQdUHl6gIulyjJ72nbefHZqtFTbQIR1pRM2U7U2FdfL/RYyp4XKF33gpripwzhT9UBE2r+SoXwxfqiXfSD2u+60UWWTEGY9SupTQXfZi59Q+8dVQduTw7FaWVlTnsa7nS6Cuqgqh7MU+kfdk8k3Fci3KUxzDmpzWHxFDlfE5pP8qjJcAW8lmdOBTqVkjlzHwCDg+h8UNVQ1AHX1DPzd/TsnDYUCTE+046NX1jNPu+u74UcM+AOxzuGIiwcfFOEhrJzp17FCFZeKIN0/nQ0Q5ptte2VhnSTOfGP2d7CbV5FWUMZ4mEOZ86qbetBl5VVJIY/m1ZmRxM8gjuQ3KhnFFmZ3SUPU58R/psJU2Pezf4h0gjha7nIeaLP+KYmX6RBpRg4M3uqP6QrlxG9c2QUpleE2f32hx2VVaKh2V0Tlfm5aJtFoqoK+35oB9dzKaOpyPIpzXck5le7LX9FLIDloEAcRJT4k7LiZPxTXzz69UMLC+o5uWLJ7rcRQH5Iep41jdTGU2VgzvweJbOWdWpk5xmHdg2SGZoH77rloo2vFJcTM7EZOgOiiiPebG2qYvns0VkU691GfZGyq6dknY9pTJnajgeVO72d4B+icPknO6bN3vSG+CiFMxryTYY70uSeZVOY9TodCsQMFJZh/wDwKzs+i8KJ/eoT+iH0j9IA7oHMA/V//pPTfBfNdKrJJ+KzNNuiqE1nVRu0QFakobNVQ7NVrsLuimw50lbUKJhvI6epKYOpTygXNLx7oQ+rxS16Oun4qez+6zw6rw0XFw9DyIQc3Q+pT4l3sjh8SmRGrt47PI7w5oFuFiBFq5Bs+S8tgoqc1Qp0ddE1vutuo28qpzullUbCFbZotEKBOHgoXCnC6jioHt0bJdOa0Av1CvDJ+CdJ7egBRZuw15tUdU2Ng4G2qtPwQofkdUY/TbzDzMmb909iPAsdwQ8T/iT8Y9tHzd34doPgnKlFbVFZSCEDzUsnNzkPBXNKq11xFXHZpQ2RTwwlpDimQNfr36jwsrvVCKqfJmHEeSY94JvUrq03GyR7iKgVb5pjidfTVjfJh5h0sgzHRCdvvss5A4fENLv9M2d+CmxL9GBMjN3zvzOPhzUcTBRjG5RtaU6iqbK7hZZaF/iAu49vjRCaIiRoFxW6vY9E1u2qBqtdnVd1Vy0qhn5rRWFFRwXGLdUC3KgHNCdxnKP0WJZC0OaDRrihvXl5PJMdJZ1AE0+HpaYqBr3e9oUX4CXef7cmv4qk8cmHkHMiiGFnxBlhBrxaqd+ImbHiXcMYfYUVa1B2sVeiywsJPUreYl29kPI6BOEc1MvJgCeZp5IMOPadaqduWmSntvBTiYnU5miAA0WhV6ohd00KFtl9hbTRqzOFux3bI7h2RypG0TN6rcuw7mtdarVXcOaDzKrP9pN7qZmsK2ameXo7XV9s8mLjZJCxtS14qmQwMDXSu4W8gjv4Du/9RlwvsMQ7d/6b7tQZjY/q7/fbdqD4JWyt6tKr0KIOhW8daNn6lbuOrIuZ6prKcI/VbxwpGzutTigwc1ZoHjRaKg1VSMz1pwhX5LurXYMx7zVRp2XCqCqHRd6hWtQr0TmhGQ2amhvdCA9Fe+wbYvo5hueOT+ym+kXj7kf91Q3CLt39XlPtx2/ROdCPrcfVmv4KsUkmHlHLROweKDXOy1EgsgxqgwjB9mzicowpa6AUCpoNhfTyRBC/9onOVqCqbvN5I2p2I5Dox1D81w6LvLWyNHUK40czg1VhxFfBcRpXmiWVLRqUGCzOZRmp4N9B0XXsBF8r2xsHtONE79sa4jpzTiP3s8nD4KDDR92NtOxTEYdrz73NfW8PMXwgEFj9VK91uSMtLrPzKlHhtA8NpR5IBCqsrXOycO0y1TYxmzfCqd0/eVHXWtCqtmyBHfYgu+aMbAQfFUpm+SAPCB1Vc32XN1E1jdB2r2Vu0EXOqMP/AJcK3xwMwi1rlUOJcwPY3hdXkmvaatdcHsXe0fNOa7ERCo5vCoqkoHoET4bIwTbMEEKq7mq7/k0LMGuA+9ZUJv4K5Va1Qa05a81R78ypGUyU0s4HRMeWfaHizBF0bqsHN1kHllfFqyxOMcfNzrBQRGePF47eVPFWypNh2ZvfaKFVw0v5lvMY/wCsPGjPZWVrQ0DkOxa64lb0MuIkAcMOOEHqdkgjFGSt3mUJkEeIyxRjKOEVX+OlHkr46f8AOr4qY/8AUK773fMq0Up8mlQuljdHJTKQ4U0TmrKeSdSyFHKKt+MIUNFSQ5mlZWRjMqu43r3Gqg1RI0WUvq7ovs+HxVZJM2wrDvnxTIpGjK4PubIiHDuxbqe0KBZMNHHhWeS/a8ZJL93NZMLWDXVV7Ngrq3o5Ip3ZYpwBnOgKM0krWxC+YlSTx1y9yMeCgOJic+ctGfjOq/wTD5krhwMP5Vw4WIfyBWjYP5VoFQd4aItcKFeK81dRfGsiLX2b+qytFl1KofmqMrL4MXc3LnDuK60Wi0VEzWhKswDYbbGHw22V7+hHZlbES+HMQwnmEGgOeeTdVHj8ezIG3jiOtep9BcUd1XvDwQD6jZvpO/7IKztJCOaQBcBzeQVqr9pxVR7rW0CzMaXy8s3JVPNaKw2U2V2E7Y/LaEfTb94rDh7+buSzNiY09Q30bSnZe8uIly1OVaUVmrSivfYBy7BsqlNtZZiKN67KDYz0Y7cUbhSZ3HJ5+kKqea0qu6EaDYTorX2NFNmm3oh1WQuq09gjofRjYEPUCgOWqrsoNVVXWoWqbdarXYaBWaroDojyG2Tz2n0//8QAKRABAAICAQMDBQEBAQEBAAAAAQARITFBEFFhcYGRIKGxwfAw0eHxQP/aAAgBAQABPyHofQf4OujnouemfooZUOeiu0OqurErMvrUqJKlSpXSkYqBUpKlfSda+lelziMdR36DqHSoErrXTKJjoro9G3VRX01KlS+hqXBv/Jj0UXofwECVDoTjpXSpX0VOYxxEldEx0qVK6blpQ5SKWt7PeNg20jcOZ/dHFFRFCbqNO1cwptYBfNekuX9D1Zpiiiw/a/ENTBY36QVKqDHQhKzAlSpzEldH/FUolSpYAPbxK9odneGTtVKE6MJ2J8F+eZf1PdzP5+r1P0cx6F6FEvC9iXadN4Nd5W2xjIc+kAWlW0GYa8LDX4mQIZ3V7zDfEVSxLK7qRuKTZKlSujr6Kj/ikMdCFezoJ/XzGQ7akxJwJ7AQwdCj7kP94AdHrUYxcdCmUYCuXOE6MOM+sEmznBFnwm5TqXLTw95cHdFZRciokPHyUWRiLBZCOOtfQMyotda6VKleeipY5FmqGb4IFtR0nu35hXbAQ3v3nEiVHZTWhLZ+tR+CvrYuhshvnNE9BMiRvwmFkv1ij2SqzuG2Kz2gqaOjAxwAlquXp5lCqsMEN9aj0qPVy6V9D9CkD0dlzOpkDNNyin9ZjviAm8NTCJyFGOWXQ/8AzWRYUEQBWCzvh97v9/SwR6HB5nSVd93aXkG3wQzGctNERllkgQpx7rQgZqEAj8t8xCD1Evu76zUtDXFypX9cmUimcdalYj0Y4+lUfppiexeIVxla/omXgY+MzP8AjymbqwHvj9zSz99XCxnGYbr0iNuivo/8mZ0CV1sENPbJYt4v2TUoHlgF82RmFswJTNjOYdAta7w7AYqGhVXtLYvbFdioeJ0KV3Ln2qIjr0nEp8g9ZtlV0ej9NzH+CkA+PCGyocYpw5Xg3G9WsSluDEwdShuEkq1a12i1Sg0mYtIZwL/2ajO3RwRzGCKSXcBx+5iDWmcrXki7RjeFRclG1qPuigshzxPSfuJqS/EETD3EKoR3yiD0T/BEziGGOl10voejK6VKlfRUqcSx2O0vOzSrtwxkZmtLphj5sbmYlUTQxxTDMrDDNwUe8NzZhdHijJLtW1JHl2IVm4d0rAT90PvCWjFQQQygo08xaHYnrGFjXEEy0NCLbZd32gyg2O4iO6Nvap3JhnFKd5bmHZuJ0raKR/uKW0eV8rENS2XfiEqb6Vc2lSpfUrpU5lR6B0uQoXt2jOSD+GOj/uUxlpgZa05jkQRsnkmUubLriLoAAt7lQbAPdqACF4bY9qGUCUT3zd2HvsYv0QXeegTBCprg+77wTOTwCOlMKKxdRBJpfLzpaXpMTv8AC9WYHKie8EwECLnywbhsyMNTKk0wMERMzhffzBTNQLDnPS5cuMrrUdypUro19FdLGfH6SL4H4Y6/hpnzI3ivsf5gq7O/wxDV/ZO6UEN8Jfz/AOTMt6fkjDM0LwynXAX2ZxMokF3GMMLcOzAtKXZNRtOWskfJM7Dvwhkaj6MwhcWMSzJOClQJA36SQUodWXXecTi4MVHQKvSi5mS909ZUqVKlR+iqZcvrXSpXSoWWNct3dS+Hw/DMv4am/wDjcSftbZcwlw1aV2mwkVarlEFIo3qMt/8Ablr+x+AnjnfcY9VFNveBpZJeEnDGOuho0MPIIKbGIa7EP5iHDLxOSuKX0f24CTwamSeYkYPWWtvywyF11bmKg4vmXm+Gu8f5pW+GalP+NdKj0Zf0HQu3b/3M4JvdVHX8dQf28zHDjQYm0fubMfR6ogxyLiv7QsC9DiXMiXFFmJnara9yWJofDtzHEab1f+TSLPeKBMLSuYt9aH4QfqIwG1YiyxeLy6IAfzO1oHEvHlwcsyBvvLOikBZhm+/ia2EVnpkscZDzHo9U+h6XOPor6MvQT+92i+NBTf1bAqJ4NZmpsHDM8UW/E4lTfwMN5CGLj/5F7zk94vOp7oKARZW469w53mL9AOMga9yLTk6rzhIKqZJqC1lyviIZtA0y2i2AdlPmVitneDuy+GBk68EDbXZDCyNS3UE4lRImYzKYfRiV0qc/UL7YCVoSlcYgz4KtoQUpUXF5R6QxCqEg0ssaVePWXrG7bjiVFUGsesJ6vgaXcLhhUV3QBTgjQSvTIcM+FUc8dLix6AZLafF3BXvJpgkO34hUabdHESjXB5ElJvZajpZh0jpWaW6I7ya8yvMwvRcEFrEEYW+hOtdH6U6Nf4uIJ0Z7y0udzV3/ANioPhLYilpYyzY3+ISwMb2Vn8QLSolvlObweYxTlXi+8Y+wHGziC9wWblAQZgMbFY+bxHBWNq6lH/7VcTfXiKLQXKOvLaDidwnpPElHibEF12yttZydRxDRHGuZRY6nxoQq4H13LQybKvbmVcMZaDMBcrOcsqV15+uvpOi9BTShn8vxK2ZlvBg/c+2/lgtWET2mZ5+fxKSaJ8FJ8Ujp/wArlY6qvTn9wzNoHxUd8P4QrZ/Lin/u/wDsrg6sZeMUV8jX3hIs5VrlMa/l5I62Wlyuyq0piIEKLXb1iL3J0WZUlCj+EzOqtFxFgMGSvyQpSroK5QKuLHFjNxlRI9K+ioZlfRXQ4iPC1a1VF+8tynCxHvz959q/LFS/xUeDhUh8acf3eYLTAUy02PLgmi10+k2y9xkdvy/aBhyVPd+5nawBXmMuJKHu4x2wBuykOpcxg2dluKxYs9xQkNX3EsPVoqXJU01pSK/JfFdfAQHQK5kc5PZ1qcEqNy9ZX4rVv/06PRldGP0V0fpSyXcXIbe4xIZWOOCWpWL2Hf8AeYMnj+WYr+qntbfvHZls2XTlLoNsBhIQ1c05b/8ACNq4Lxf9V94nSEthgmtwj8QOLJXzF9OA88S55zjrpT0eWWAa/io7u7Hiam38jtFXLI7H2uo21m0PLladvcnt9VCKVB4SwVffhexRXvAZMqBYqZvK9JQAOAqZjHq9K6BmP+FdR3BVNRzCeSQ5q/iGUHlPMzLh370ROljg3AZfA86qOZWRDhUfgK3XJUDKW9yIJql8WGON/YhxB7flKnD3UCSqAWRp9aMsREqfC+kTT1FxaQU5zLvCBdN9ueIH/H5Rinv4hAgqSHLYZe82ofeE1obd4nK+9dogKUg90zJrkQISNvhNxmkzvc8nB3IZ6VfVlf4p9Fznreeqww0vA3GZLvYy6zY94xYzMY4mYIAAr9ETQgk0BL7Rs2Mnb+z8zJI8u5B18RrlkwYvkZYLiRlUgwWK7HlKs4M9FN2Jd5dAPKO1bzTLQyFVMT8NAv8Ae0qpjNMSomzeEFIOOjK6v+GXS5f0XuXHq23hOgVF60U4RWIgSl3A2vbDgNPcjKn5JpGAAtMiEPg6DZP7M8JlnzTblDNxArCX9y/5m0u53lidkA6sn4T289oJlB1pHX5jYYzUodyjOHd6hRObse6j91AlFVB+gzLkN4MYwBl89X6Ar/PUvqx6JbQ3EF3w7E1uSOvvRlahEuh4hcIZ3YQaNGDXgdp4LxM83iMr/HsJ8nr5laI05/RK31YDj2lZLUbev/JThd4zEAGQ7zjIScveMdszHzF49JwRR9/wS/CeQ+8L/jBPszhCy1q2a/8A4Lm5XCxfWYYSpcuMY2L1AtbevWZVarBHsrMucJXHD3mQ3roKhGlbiW0rx+YjaRuQ37xChYeByXhgJTbcNr1R44G1z5lAhXPCi4vFb7zO+8fmWRFF2M3KasBgcu8OWL9+0Og3+yBI45s7IeBnrFATdRX1dx6MP8TM0NsEABPYP5l+8N34g2dGLK4awEvnKZuGDymFRjXULGqheQ4WUNtw89LPV8QFOM94AVqIqxUOJYTEA4T9y2Oiq8kY4w2DPZifGVzujLqGT5S9ABNIzuopav77KBZ3LmCRjI/MNH1MP8a84UPLxW+eYd+6wkSg4qGOGLFix98UOXjBeqxEAoILZFyEbrncfBtOO0proSBrbJzZ/wBFgcMwZwbvGmk7VL+GJQtO5xxBKW5r7zBzVAdsRV4wemIF8CVi4DR8hCEr7nkl+FM4j9TkHrkmIhzg2EFL7PV39F/WFdEEtpxFEajK/gDL9RfWC8xYsWMENLwQCnxK7YYCMFhx4gLglZBmGPepCV4ftKSMS4C5gaozEu4HoTIDXMq5TwZy1Ra5fZ+4xPO5F6qzU95WH8gxcPwxSiVb8TeZ5Yi6dn2BNYbaoIOpL7faF8C5DKBA5feJ1df5c9B1ouYvex2idk7CQ3cXn6AU5a4PkZjpXS+ZhOx8QXkqo0MnvEDDEMX8I7ziEAg0VsiUxhzCxjVyxsiLDoOe8soGZS3NmuOYdkrVNfy5YK2O3rM20g/MuQtDItxzLdprbsLdSoa2hiEleFCCLDnEZGj+Uro9uj0egV9NdKE18iXAU4eiYYj0jDDD9SQaGYeh6wl+kNk+Yk5lfBDdRHiDNAsXxctTjEpzZ+03Cj1jS1cXhsIdV6TaJNRPp5cGCQs77iX/ADHzKCzS7cmENjiqOoMRmC7g8g8i+6DoTw1NRl5DErilR3lU6V/kdKlYW8q/MADEGAl4i6DnMpwTJ8KEqmYUayxtviJt5JjCX2DNmT8Rztx90slKxdwO6I+ITSjLDC7mIBMNS8NxOaPe8+zTLa1bz7MyQ2KVQgeV+yMJFlbj7B0Hu78XTskEX6m+wdiaKOseZsuMWicxh9TKrqlnx+IyXFcWIg8k/Q/LNNtqaviVkkyKfZW4Peovo8pQNkAazG3Dk8QJkJc2lia8JoE7y9j/ANuYbgauJRhAprMGablkzAZ4m3tKVznmHGt3ZOM5ZJ4vJGMlXwQ3BNOQCvswJLVWuog2LjHPiSpctbypMlSi/hxHyRbO0Y5iTPS/8VrBjjosWCkcD5jAwwrMmxzUL3MM+Yb741Uv9UsBRSgmEM+/CYHaiYWBw6mARXSQBhycSlItqOBZrtB8meAU8uWUAYJX2azLjTzHdd5cyQHv6wcjaZJmWdpVKN2A/YYnPKS1hyua/wDiI1WJHmKlDi0PjF1m0Bea2u0pWzg4iIcl3gXGLGyurCc9b+te++j0jtbAemY1Age8Fvsn3jubSxb91LzefPGv65h2YL1VFdqqyI7GVgY9GGbKMABHrFQJnvKg0pXrFC2j+IRQvHeZiPEqKeE1Vse7FV5jpuebBQ1M4XuWKymIYVp6w0zjWG98ok3BiDXgMvd5uWhr6xiNtkVFzAtvHysDM7x0ernql9a63MvE4j0EgXgSZQ08YB2Wkj3K9RD3L1DBaIUnGOIIAVYNTO/wntd5i6bCxjoPQxkRG1PIm4A7nKcuDjEFi2DELyViIK7xCu6WPYQrtCFcO1x2tPmWtkAW8qnM/LzMEPKJp/UplfMhAyva0sDjrbfoENEoovPc/UW7XajWuTZZia4Qm49DcTrXXl1HoxROC6x3dEcVPCrXAijALIAxib3KJdIjSjZdj3ngBNGvgz7o53ItME40emYHxE9LASw8lwX3REcPiNt4RwvvPIEIB7orcgzBlZEFlBEPA1Byu8/UQgJzticK+LETQjI0ErdCrIFYhb848LTEO9nAVD2gWGskcdHodeetdTKnzLwJfRyjBh0rR7H5nGo78D/sMQgcnGJLVXFVRKDgNQYyQW/IHUshi68Rt/zu0oBFcp5kFyvNDP4oNtl6plwaTvKMX4jbHM+GAJoDtEJdcRsCQ1cxChR5NnyRw2vpPeQEqobdXBifYKP5joD5lNZA16Tx4GUhnOxb7yo9bqcfSw6P37ksz1IqQcPzlaYgSbWj3RBi6h3eCLwu9nsviVUgDwSullLGSFutQVHRKTF/yzKS4mUTd0dQJV6jaeIbQ7VcTlA1KaBZUKmDUWbk7HEvole61zC6i0ZcINvMxzLgg09p5nDS2uYfaOM3FXEuXAFcww2ItvWwM4cXKKCxBjYerr5ii7SEVAi8zzkH/O+i+iMEp95R+TJh9mkNLjCPgwX8jthrMqr55kNPda+IIEZQjuEbg9C25fbXK4qWMcUK7i/VwFjrVK8ampJypvwVEM3nSHyzHGBRhEJPoviU4J7wlhclq8RpaeKFrbahmCiIxeucRfBEksHRXeAkUhPeoaCbii6jGQ1hiRm/E8WZC3prVge0NEOARyR45A0RBc06v031DWEa73EnJFjNIBxiNTPRp39iWg/UcDDByfade0AZ0fwJG7/uoPGyRga+xMyk5YUmAw+EfhswcrlZT6R4vWGEiUOZItfkbTji7QWn2v2ouegSladk7sCYcYHYjfgYjGTZ6LAIpjmGesEKbAmRl7pe1AMUJJFEGcwJRDgnJ+z4iFs1E8CH010voNA92AbUU9PSaYWPiH2abtwnmO7/ALv1AQLNjzAl8svOjGQzzrJ5UVLDIVe5OcqnGu5qZFlbU7SgJmfwRLDA2yzCLHwwQrU4uVp2wPEoWElabM8Q/ljOYLsTzKOVsZTIPFhluphapbziYjvakWG22Ib8ItzaPOQEvQF1K59wlRuuEyjGBynKSzg+Zkvxmn/sYiDkPlj3+gl9H9V7s/Ymca1LIyJtjKFBECAgLUCp4XDYumOy6D2ICRWv3eX5mLmXRVwqSj7wCKW2FmM8wi1k0ZsoPMqDXiPjsKi2+syndqaD0Jhb3KXtgh6pUOzmaO72zKOypwWIGDBdpxH+yfwzGwvxShjQ3mKVOCrkhDty2cCPlDs5MPFeYFwdm0N7FakylC48HwQUaGg6PULcCvidnfEuKQcx2nI8xjPpNpcoNHlOWYQV3VekuPtQyHCnkgpgAOSKTepyEJ9xAS/JQr/olWj8czaDio691REGfKpSOeKgGYd3rCkBXrLMauVmGT3ieR4yGdps7mOvoG8CuPi7qKhZyJf3VZhso024lyu+eIQZvEGS4ramimBMR6y1VNPmAyT5ydprXUTSdhv7saxLMFMAH3man6Yp8QGXQNPXvAQioCgj01M1B9E3l7EwAo6HYhPxQbjHXpIeihjNn2qP2YOcijQLv8Sm3I6h5mYfUAizc95PuV/9Jz38tH8rxYha8bkXC40v3bC4Fipa3u5EKrCNgocRAdkt2kJbx9EuD2qNQ2J4NwP/APRLQMNwBqnDMQxaaTLNnNN/iMAv1m/Xge2KPQjkagbF4w/8mYw9T9/+RBUnYR8YL41sGfmDSJzHouO05M+eIO22VwFS+kui9ThOfRhcu4McUaDdX8wle2LVShyxVtGvm4xdrAO7EqK9RP3K6j63lF7XA+2AQRgDwQ2wZlGgDu49ExBetsjkMViGawwghB8Rn1V+kFhj+fdlvnlq41+bgDvM5r1vvAw8WNocXEcLe8s/9Q2gIsUIwqRkPZDtuNc/wRmQzCBkkKeKzc8xmXFlPWB3YXchOxiG3peig5hmLGzFgmDBky4Js3YmTfYB+yEQY95cP+Eq5USa6GLTHngOctUKuY28e5DsbijGM8CIPDcNVHPUF5loKvYhCVLpqgjlYOmB94VszIY8pTBmMENQFgmVrROGQ8bhRzyQPetwtBHJyyjT1mVzWLPP0h369DxLqO4bI6iqpuwlJzAjX93swmk8ThAzDoxRTUXEehWyYl8ahfgDDKJ4ziaIrglSoJlszG4KhtzhzUpNX7dFZJuEiBRCzxFqilLdcTQ5eIDZ8tQQBVXmAujvKYe0x8F9BMBAwfM1iGveXn5g3Udwc9F4mc0i4JV0fG+TNuPbUNEem+h6GO4xYHcDiMfgQr7HRLBQee8QxPtO9VeCI65OO8NbZcwuEHEEnJPaLNfKKy8kJbz6TjwFXhzCKyNVAIl5lzrMZT3mXb6HDFbYUvFxcHHQ0nWuIroGNk7QZIbwpzGO4x3HL0C49Kroez5iNBjtGmmZeZ+I5qZfLnmZigcR7ARbMJqDUqZWSJHZlLHVxbi9pVCSw13Qe02lFFgxZUF6sslsUdy3xc4ekwrNhNGCDAjLXDT1nMf3zCp9yBn2hH//2gAMAwEAAgADAAAAECDFLMLDPIENNNMPFBOBENKBNLDJIIFKECNIHDGICPMHHJGDLPOJBPMIKDEAJBMFDBHDGLBKENCINGEAPKFLDCKACLIGFOEEMNBBJHDHEHMLILJKPLDGJONDIFJAOMKCHHKBHHKBLLLNJBPOAPBOKLAONCOFBIKFMCKDJOMONPJPBDPCBIMCKHOGJIECKOBOFNAPMKNPMDNINDIPLEDAIPDGPLPKDJAPNMEDJGMLLBOCJOOLDDEKGPAOJAMALCPAMKELCJLMEKGNDEMEMPPIGLOAALHHGBMOOBIMAFOPGLPPEPKAMFDNGMOHIJACDNHCDNPPPPPDHCHANHKPLADKBLCCKPGPPPNOPJMBBMNFAHACPDKCPPPNHNOMCADEGBFCMIPPAABFHJFCDMAOEKEPEJFIACBALFPEHNDGGGCAAAMAHDLGNOOLPOOPFMPFPJGPBLCDOLPENICMIBBLAJFJILOPNPHLABHMBPDBPLMKEPNCJHPIHPMOPBJOGMHCMALKBLMONENMOJHEACLAGIFKHGMJPNHGDLMIHLLPNEFJMLEGNJGLKNIEFEJEFHABNBBECIEKGGPPMJCPALLIFLIDPFDJBBNOPHOALIGCFJMJDDIIPGJELFP/xAAUEQEAAAAAAAAAAAAAAAAAAACQ/9oACAEDAQE/EBx//8QAFBEBAAAAAAAAAAAAAAAAAAAAkP/aAAgBAgEBPxAcf//EACgQAQACAgIBBAIDAAMBAAAAAAEAESExQVFhEHGBkaGxIMHR4fDxMP/aAAgBAQABPxALgVOEodw36ZESvXhY4i3DDMAR3HQ8S8XAIurfMzHX64jBSi0pcCNaQ5gZplrZfxLeJVGdSxqWy43ERFbpiVHG2VJm9RwzqVNSuPQG4d5Sr0CziXhiDcrE4JhEazAxFE4SOvVMRYqotRuxNpgOi36mDiXn00pgcQhlLuUSiIYhWYANSgB7RrqDrxKtSdIBEWIoyyiNjuUSolSrmWtzDcvKdwrv8yqmyBcDC+1QN+IIx49HJEqOpVSy6mDFTB45mGWNeIkMQWxzT+JzMENbmeoU5nfiWOMC4OMLBRFHErxKYHco5WVcZ8SjCUOJYlLsJQsQFl6uNvRVQPd6AkVnVP7gLSJLSwd+YRlgisqmPaGcp4H+p1b8SUVCJd08SyuCqA0VQ3zFvchVCQqm6mZ6FqLfptHcVS4sXF+WB3AuXDmXI8Q0dd1KIYmL0ggzsm0G/Euo4g1iCmZEpYlJiIZWVpKIgYgzB9KuJiBcTiU7YlWXKJSFm2JdT3sApRKiI6WVMBbXJYvEtkoK3NDC42bR1j71NQUJUe7/AF+JtGUHSK/qZPoIvihz8xXVa9NPRKjv0YTw1KmXTYXDLo191718RrMKCM/ZYIeVAqWLKNWPNwx2fLAXwLjMMwoAs3tdCAgBVg/git+JWcoYy6FBaLUpqvcRjNA3uAYZoCruVXRHpL9QITQz/Bolm4MSpUqpXiJ0TPUS9lSgiJgzBo7ljBO469xjRqlIGvTlgULA9qNQ4K17wxQH1APuOpTbYCfgiCWBR2Cy8p1NPRLI15myRUPMxip3TMlyOU3SUeZs6UYhFgmP6Ry4KGIee45anJxcFVWC4tgijOeIpNfUoKuAYky+8OpXHmJclRrLJbbrzCdnXm+EbfqGzvA6nDzMR59HUbT3QKYnMta8RrAirCVj0NEU7xPfLRkjeZTqAsNUxTi5d+vCce2s1cqzB+Qigjf1wG8teJieVqrslnHZ34SH4mgwuvIP6YeXue9j9RofMTuPiOCX3Hdxb9AqbhUlwZuOLDZyhZ+4FpRdyy99RtBLxBuAvDCwRTqJn4L8IlEQ2hKm2NRzZeC8RYlqwqfIo8mveU2ag6BqW+EoS2IXKdShWohxKdQU4lV4mGAh6mN1uIDEqULKuWErUu+IEotgnlZEeQMQ2B0qMD71UMW2VX8mOoSDNyVO6lSmKor2LlaKOswoJBEAUBnVxl//AIANZDipdCr6+KY/EjavUchFrRHMGKlATnHRA/MvTVq7707KHBuLqxmSF8C6zLPWuHRZruBG4Jj5alAJVtYlRoLKaMZb4zGkvRQD0EVcrEbc9vE1bfGjfgl02VbmNFxYDlgYzo95XaF4MuL8FxtV3Wj3iZuY4RAtuP4lU9pzTSJmCyoIC2p7olMS5bxAnmH16BfopJThBctEKEoeTdRYT2kJZBeDRStBIaXmDP7IRYCuXGiKfvsTqlyf+sfKoVtA/wCoNmbiYiPiJ5/cTOphL5jVuFF0RgBtY67WmE6/sywlP0RyFArWKuuIITQeDJwzAFAcveL6o02g1ClsVgfqPpWuA/vBEukYRBAynKxL9wQ8QhhZ8DXe4hvACFHDjWo5tECGX3xAXsmkgNWovy9MXHUVquIcQMRELuOZVMO0bDjMqVMkoZR16WC5aTxJnIZi+rNRZJ2hS6PGdwmiYdrGTwyl08OirL7S/CjvKwoe8rcQ3iCVe8kPiNYdohrEViVjxGAVavFSqo7dRF4isvErYGG1mCCzBxVHL4y+IB43zZvMcKdHyRTCaW2+5sBpoZ3eZpbCnQr/AMlJenrKut+0JW4Arh7igxth7QOK+LK/UuseykKlhyaffEKWUtqKb7PmHFocloncQmoHMQqiW3AXTcxQmnoLJf0LS8UeqX6iXS4ausqpfjcHyINGogOaS8OcQDnAaU2G8ZCH2tA2C3MxClwD/ZjwOABS7LzGifZw/wBlwKluJerG5i/2AkfgRlOI2wP9gD7rhRDj6g7gmOrw/Ux9XsyrXUIUJ+2KLFqIsTZWYXX4grCSsKoHiK7qrbbigZZtsptVkaCRQx9NJRhluuGsu7/mYVAw4Ww1MXVwAmg2FxPqcMOQN0bxECTbU9IQiAGLZ6g2iIw0PCESUMxyz6AWYLhDEE90tl5zGPRDuVpxKwU+gJOZmHPO4CN+7Abtf+ntL07EAp7/AEQ9uhazDA1oIAJnRUDlj3sPpOSZNZIkcQmQzlzVly3le4SD9w3UpROCRjy/sMDaTuBGH+mUV1AG2F0OLKY9xx2ZCuWbMsJkVh0MapwnUBB9pb1Wpynllviz8FS33CWuAdbKjxQUJwPgq38yohYIZpCmMaXHcBBYY1yW+JQ0iaGs4N/bKMrEAe757lUF7+HGGu6hFxSVN6R061DChPAM6KlguKjh4mOvRl6AqJfoF4RRLsXcszajcy7ItMG30JWYtV0IE1lYY+QLkqPsP5lVzij8oKdcCfjLviWviVA6cv2mZwAfOS/gZXcDq5Lz/cZMwT7GR/UwOHyis/dS8weyq/4IK+15myWHiVo9+T4XA/cd3Y57ClyUvRbPfETkCt6I5X4sUsVYNs3WjqYaKlYTBFdK1n3jqqsDOJVdNR8MlOfNMO+xzDj/AIQOqiBRcIyZ+AtWy9niBlkMLWcxs8xw/gFTX8GD2R8KllefTa/RCwA+nvZmELrwhweJXTFMa23/AOQNXjP7Qh/28xR6YyAut93MoZ6hC3PvBGEWMZE38sqVB10BQq+7LWatF4Gn7lYKQ/sz+4d42yXyC/FwbonqAWP2EZ6MJeRb8bl+QvcOIMPRG7k+tuzXgzLXL7QXQeKI8VVtYHn3lx90ale8p+JHbpR9TBICXMniBjqtAJUgLajKYTTxKuojSl6JigcrpUNeWsDMBhAAeSUrMYInEqI8RM5lSpTEnsleJXcDxAbmBPZcLXUTMqItYB5NQya7RPJZYaKoflN69/tgwVktQqMVDaDCs6G/iMO1sxFC4v2hDE4AB0uUREjrBQMeww5PVHUFhbxU1FOO7ZedlhTnf4YhnywJj/hDC7POYbzEGoKo8eBogSkbixy6sip5Kr6RcgXUR2fEUqDaulbKzyQGUOmOY/bDsgOTtKxVFQu4KEQDZiWlspcDswaOfMMEAAFPY7iTRtCRtEa52zNPAaWpkmb4PTb157gXEr0VMtlpW0Ed49DerjZvX8Fdcuz4jf8Au7ShFqz98MBQ3ggr+0wqrNt8SvyzhZFlV7SunIH5xcA3cMJY8nk/1KcSggkqzuAuV70Vt/ZH1EirPK/ipvUp3sBVOiiVI2ottTogXqWS/EGnc3zgfbs7wJfMaCdbJx7lZcpi+YsHbzHW+VufZLYtF2n95ioZZyh/3MIqdu8mPoZhvthTKFPA0fPiJhkyxddn+RNCn3KULepqqApEnzdwLF1dSnUDqYGMQhVEaN14nNdxC4mI0NJK8IB4lcSnUp4NSic6lQJgjtywU9E34CAJpaRUjhg04G5a9hasK3s7iACMWifuFApXLA3ZeYrOwTkpV6bicPwtDF2uo/V4aUAF7alT0wDIVA43EvrgWy5N6/yNibI4oLzg4gCqM2/6zA/Vh5eUXjqNIKRUynJZ43DCUpi5FDsfxA2s2VlxftEZqaZrCaw0OmPZltf5kCF8SL6Wpde8qA1DXbunr4i5krpq1UVm9xzJIt8QbmObO5dKdFaJyb3UruWIw7Ne7USghuN3ccPqdRw+ljPdEeUCyJX8Ar1UKHotWwLOP+OV1tooIMqm3zKbHwxW4QxWBV2ZMpwTebLl5t8y7toLRtfWfqFhMcCFftWFhOhWKAPlYVkINHbem2mB9gkWEbyaxAvVUH+HDGaX/KpmBRbIBMdX+I26FUSqcxWLjuOU8y8xafaB0YbVAU29EEuibqhmMNFACnzuL7zsQcr4j8qJ9DIcWxMFSuUMGAHgK1vB+ZdNUYLHYnN3H2ZgwQotkHzHWApUDZdb4mCHULNL/FSjmIPRMsDK9VEirEgZidTmIdnpVyiURKZ9KmUcsLpLCtr9PylbhYG8QfYvmCSgwWjkYS1gBVbF/q/siqpdHLB+bgJBn+1/2Xg5P1JaoVRjLX8QX4GNKsMLNwOJeJS/rK+FWVdFf9P4R6FXcyahceZhmNw4AKTPjAiVkai0OR67jYwcIx1TpgoENDJfnxLgEqkB0pm5d7UtLw6jO7VSFWr0P+QF5ZT03kXh5lvQjQ2ry1rmK0FoVQX9m5ZTlogrdvEbgu7AAt+WNg8E3D0KZ9DLkceqhWW9BKlYiX6EqXN6lyn7LtS1s+YWMF3nTOUYB2HFvtNTgUjkDLk+E40kOyxfmj6lFFNsNqlftYgTmp+UC0WI+ydvskQP7GIThY54srggOi0assvFxhkwfxhOHaepPwp9S7Vs1INzBlDEC2NCzS1FcujdS0KYprPmNdhw+DKdxDVUtv8A2eIobraHVOfaV6ogKwOpgpUCbNl9+WIga2QtrV7uH2QLzuLuVCGMXV2t8sGLZwaaA6PECLpCw7cCVL0DCGhe3MQGjiDn0V4lHcdzSbeqWVAGvUaiV63nUaDkTQdcZM/bDWaCyvaRmuiLzfQ+6hGnQzsQyrn1lxBdlAebWOxBlqECbJxLuuLMy3nApXJV0VByaZjzMAHcCHolAscsaGNlDIUPcUAYDWEBbibvBDKkXEpqiopg06jMmL1P1AKixtHyf6j87TQYfHEdXFBwnD7qphoCIRSLC8PAnKwAC0o0ysI6XhJ/UvyoADJ09MsSe6LrtSW4lYtgXb5i9xbpgVvyf8ldB4G0OpUexD+hsbnXQDB8BD2VKWdsFGYlRadPodRR6IQqa/mmfQ4EhVTzCxRbBk5d4gUWJBpC74bfEui1O9bNjZ3AXuxWtC6iCV79N3alSxKqIwyNauEhBqAsJ5xKAjMIDJwbBhuiFXXf4lIQ4NNOiDaI9gA663CDTPe1ttTFAEb/ANcqmAjYu6y4hRHGAvzqbrpCuoLwttKi3KmioZQtkMyVj5qVoDYUtfBu/wATVf8ALEB+VZ8xQQyTL8zejol315m9yxpt4ew7irISi0XYulac9EtvAQGEU/a5YbFFAeHdjC6JHlH2lAjd6YZTEScazL6l9Qav9H9+MTwjrX+k7YlMaIlTU3mObhAxEr+KXAaeol7mWDq8+89su7cxW2LmINotXLTmYsbh9XMO38TBNtwH7cEHslXWkGETzYwLMGyogZbd7hwJOEwe0pbKdQhvgtDHDxf7mdQQ7DAGgFX4RM7NDMcD8lTCxTKO0HUGE8wRuUOmSzXm4HxBFwqc+0bIQraYb9j8wW1PAcBq00U5sJQUayqqKteVgNyODr7y7YtFkK/qYpw2o77bOKciUDi0hV9NdC8YvbOEIASx7Bgm2kn5lVCpiW69dJS3UNES5TKlMpnIyqfQEljz6uUUmb1DJvUtrG4kOIO7rL7SxLKNseDOCaUZa/UxCKzUtShrMSt7YtYJSTNBmd1tFqPSbew3AbUKAjuVoEA8XXkQHkhIhuyIDgPImfmuJe+HhXEX+BdXa59hu4GoeDgEgVfTCHEWTBV4CbCr1M0jxcr3Lm04dVS5yie2oEU4LTTLnn0QVgi9vyjsHypC6eToy9tMUJgKm9K0cDu3ZcyWOao8l0zG3QMruJb6KiLBuJZ/EBXqNSs+q8mpbPMuWUzUm7BQ8Q/aKtq6NRZwpRoXAQgJsMlZhLRp34WU1pTQRTSMo3F5W9pVzHw2qpKIWzJiIiVX3qFct0wluOtefUSUlHwlcg+Y2tWOJUCo3s20DvPEZ6GKQ6n+8xw1NUBdPpEumgqvj/yVR0xKSmEjQ5JF3XTWS32gbYFmHLJ+GNdt3qoVGmkOrtOGIIAMDQqBFWz7N2cxslYngnFviJwbo0eiLxErESN36Xf/AMbdwbVSviCI8KBuKFheZ7J7IuI7WApUMq8SwDARq/KzFoHRVxIQgyBnM3oO7TBLjQyutxVPFs2xYFZd5YzBWAqCkSXWMRxKV5S2CZs0wtRsUMRzVYVdml1/DmDRFSFVbPJ7OFiZUjFVH8EiGkKjVmvN1BZXTqaHwmYG/HPdLExUP30CDaK41iMl68MYKjpVdMlzmSCdN6h0MeZMSVcvFmepNAs+5dhuO7IfojFX+F09NJz/APihKVWg8x/y7LK5z1BYDWILFm9GVa1yfaZyD3HUqLiVuNPLMwJZ0oriNADNsxQLb5lIx1u7uLTSq1WLCOy3AkgXENQoA7sV5igvH2gaIpm0woo8xzSxqssfAy7rUreUJ5fH+ok9t9U7/c/TOXCPO2t/LKddxodEXvqBjRQdlj/cpnfWc5hr4lhPwkowtB14mhnZw8xA5nvmwP7YWqXeY2aC4JzBOtRBpS35ZgXccPpl3OG936aTn/O79OASK5sIqTRxwDD7hgWjSg8dRO9Payl1+oLAqrqdLUx+Y0SOlUdGiYheLmCoAM0suLnPcY0AcjiZAa9oQGm2yVEl5HKcax7ZeimwmJcdh3xGGqa1yEdb3UtLLLFCslYmRnIEav3gqqzq3/g5lkfy4BeVDzlZaHNf0gBgiOy/yOy2sHIQ39wWsImiBBrXD7SpDQlMX/7LvSoKASwYoeWZ7PfA16Mp6VpnsYoPapRL7WgoPMwU0umkiU16zr0WpT+SWVKlemwYK+cRml1Rdhk+yDTjZtDuoRjb540PzKXuVrMMS6NpBxgb/llhZKwvBARkhkOZg6mw5mEPa0KHq8kvgC8ckBS3AtjNibpWba/yCFmdoGGXiVaemBKgQU5PxGIqlvmE0K1pKpF2KT3lrh027OztN/LqW5b1FJaafpg076If9wBFpAuFF/YQDw/sCrFvYsj43JMR7WGfPoLxZOTmIF+LMPBUPfMBS92ktiK0C/xH2lZRAJY2d+iG0gio6ZUF1X8uE1MUdBffBGBrfPTz9FRNbjpD93KMbkLau15gW1HJv07TvECZV8/YgtWSaqAkwMUiqe0GEPWjrcMVuIYV30n9Me4lqlg2PxDdqAHLzALyuolaHoPMIxgXjPvKFijhKYVJrqNbHlbIypBTCsBmolMrQ9xSc143FjQ96XLuWKDQ/wDGMkwpxaA/UNRVIxSZM8StSqC6PMt9MCA5a1AkDmkC84jwMziPuFFv48nvE+ptbSHI8zQyVwxziLXJ9NvQWw6jXvPtNkColzcq7i2RGrvcVbRK8APcck9/6lgW1L7z6GWYSWE5Aui4fs0au8xjJgLpWSsqQNuOFg1jBl4NeTJHngtuxguCb51ziUokPIA0fbEiuIXtqKjfxCbWJVLYILR3oEKqoadty3mOFIwXZnMJ0r9RJbYm0Wn4tPGICrbZ5Ks8mbjG2cvAUH9ytE0ssBOFIU3n4lgCoVJ4zDFuJZD4DPzDIVkcfBbHzHBBiifgxALBGK3wlJSqwb4D6lAODROYhR6mot+tlVzBr1Wv4AsycHAcpiMJ0DiNFcXEGpTQ3HBTb1Mu38S5WGZ+SJCVpuDQXSjOJXVq1VUDK0YOfqAWqis8ym0KNnmMbwKIL+/hBhAKVQW5gq4FTjeYgVUuwglyN2kQ7XDNXC5f/MQtnRLmlFdp4hBt/GXBX/gEzIdX28/VcDEhQtuJeONWDHvvBO6yKPJBakpIMZcEFxz5MQBQiUrGScOPHET5sxLr7FzSFkmrOpk4mz6c/wAEUjuBV36vTw2EyS197iU04mlcpGOFNPMFW1ZK9g+mXQ1mv5q4RWzUvDMXzKruqgY/TqoZHhczMYOfMzAhdhUGMOJ4RDVitzixThxGRaMDsQhlhhupfJQD0A/2NfbBWSU1XYR7jYFjiEKTQCBpYTzFB26YlJYcNOZc1AZEeKad3VQa/qpEvhXVnsYvoNuligM+Ygy6/TAJrxyjaDiP5o5FfxqIoS8n4cRSUHIm+tQEYJmsHxLXBQ6zRZ43EV2pn4mkNKlhuJwIY9G/4Y69DD6VKKhgcHUQNTPMbiW0EXsDB9pL71QMKZgHIOLSVYLGt0FKNLLg8wfsdKCsQES/IwW0HXAiufdltBSTPt/7LlQ1WWUbVrjqAwd8birJzuRlHVWxH4rwdIVQWl25UlGXKZI66ZKrzDJEcFajqlOExQeGWojaL4I+6rB3DF0YM5hl5gVlp+LuYm8dnSwLKRb4TEbkDhg7tf8AWoliJXNsFJKJ/FsBLCxAp/m4ttCEVvOpYD2gYUYIitLCyg0+S/mYSAz36IeIIKhFRKj2KlSvR2elRde5G93HkWLqOVNvbSx+I/Y4maADwR6hswgtuc4NAXXnU66mFgQ2OQ8VMKtu+Aa/MBoBVZC2VGuOZeATpaHjBCEXVZVKWQ1bca0ZEcWcWRIwDy0v9g1aC+EWag4Kpjsi2iMLLtjoRyoYOgHmLgAAYzLNkrnLFBujy9ExhTAlYp7kOQr7nvTshlvlEt7JcGhgYTafUvEdI7btlNMKvxFbtt7+2ZjlGAXOlM1NsyLKo0/dL4g8U9qXt/ODwQI6UCbJTeSptFn2gWXEqMc+nYqBRUS/Rz6sNpZzVwcpkhBQ1mDsAoLETX1ByWAAk25hXSMKWBBvls1tmteICzSwfQZQY8YogFFSNaJYqpDlrcrOwreyuospCsUGagzKXrpxcCg1Ez8Qx0Icsyxb/bhzxqFMDuPVTO6jcofwBFRvbBUsQorBdw0fH7wWc65naCyBMqQuTtECLXKRBKKmms3DdAm8FaU83TKVstIwX6SqHcoeCExun7gszWpOsNNb6j1/wlfA/kRGsCLYG3GzG3cWZCyV1zGCuNktwpp94IVqI2woLtgExuBRUNu9eZkxmI4olMtd38elXzOzuPiEuXNnEXFkdSq4NMxPhfdT7DEilblGy/Fh7yjX0RAAzXiA6gKoDUoQQ+ajVRFnUedkKdLIzI4BpliCZS5qNb2x3rcvqmh806SGgzLclX83CpFUXTQcEuJRmGTzFjS5L18SzIk08w2xdA4QaFUtTmX2ZNFIbmw0JqZEI7VqNOCyyrmyCwPtCroUCrn8VKqS0O0fcT8oApscg+Z00kq+bIs0sEBWCt83iGD0EOWbqXmuDrafKq/Me0geBh8hCrVMTB2s7jAoKj9wWqG5hUckDXq7ej6Neh6Quo17mz5I3KTGyFHmZ2YHzF3QgwpZ7n3Ar1EtuV8s/BCZBU095UjJguoVEUYaa3Cf3bu9wYAT6S5iXa3Ly4cjafqVwlcs5tC4tAPQAB9SlFAXw3UCuSXS1uKVorFkGEijoXGyLskSOrQEv2QbFastDUrN21XjEo0w1wQNmDfKKjIYVuDBQ1SOdOJnnPfMnwF9wI46rH9xZmNHjcHC62rLyJSMD3IufNKhizjpQHyZlOEWwYpCp7KNDgqsksOIFe0sq3d6gpxFvforSXaeZb/BIYmRmITYyJiOF38jKs1CB52/Uqcjsi3TkfiyX/zTnx7isI3yslzc6MD4hYCK4Cj9QtLqONZCeJQHCq8wxw8LHNThatHzCq5bI+yF7dLFh8xOe1KkeW8dQhbU2ldMebnwOQhdfQCisR4IPCCqrYeRB/iaS8ww0dwgOAWaq4gtdbBBwqVyYjWFcA203iF5gtB/SF4eXJcAdOE5mHvZRiMAOGxgYNAkWVa+X3IvE7AMDKjma4HQ9SubpqKwjOZe/kFwXoAmKEymC4/JGZ3+IiXfolMclfyqVi0x5EQN7M5m++rKegLezU3l1appPD8QOnRmowd0PMA+LgDNVxgKuDlJTkDyJj6l+tSyHuFKVPaOAGiMralFEgNWeANsHOPHx8BqvluIKWKR9gwfFw7upm9BXfeDRtat7YF9oD1Saq63L2FEpYW4galNcQZIrGRikyUIN3ihwCFl+VnNxpQ5hTNw1VttYRkZqu05gE6raNlZZ4ePaAKul07lXAVtyhtK09RaPsisTBo7to+0FDxqxEOLm4Upjfk1HVlBIHa4jKhAhwXt0SrtwL9F0Rytgn6hv0yz6O/RwQTLYhPEziy3wQnNTwRrhtrCSjwCsMAPK0YzmBm0tX7yctfojqScHS7sMfNR5gXaYvIf1EddwWbcXZ/pCDHYAezWnwwkiwW9tzAGVdQrFuxeyvmriNKFra0HhYpRSQOX/qjKl1Ri+Gl8xBA1a9sBDQwUI9r4icA0A/hDIaXzUVUsApqFgVzdKUXFkrjmFg/IzmGKLsSybpRcIdhEWkwTyB/CRoDGW5VASsoShXKb7gAV8IcMJLTwo1L7qKZf5MORjVwuDTFU6hRuq/uXYssBoPTDNJHrqPTaicx3HUq4rL6UvZECDi9TA1W+xL+ntvX1EigoaBUxVmaGxWzUvaF3+6L8HcQVASjft/NfBggMEYnui/0Xfl2/wL7gJ7aBecq/q9zEPFAelw/JL6sk20WbW9lRPkrK1zZVTDw1Ck7y38Q/WHvKF3LgktBoVVDzH61IBUp5WoXLB83qHUXoFkGEwGUFlQP3uAqEdCm4NwKMd07e9xL9YpuoJSQY6CIo57WUT5Zi89jgKt+f3Dq6rIbxWYPApKqsx6slFJUqI3K4fiZhW1vMHdMylUgp8N22IleQaJunh2X3Y/NxYF78gp3+kRoyvYGj9TBRzxFrPovoVdRQ2/AWx6qbyMGtPYxg4C0RC2KhrUfkw5P0kvKsad0CAcKU2n5jjzu//BUfUqZrHYbfLZfeKmbmwuXXFlxIIE904czFBCJoUGKNOep8/wDcH/sOYN/ZLu2IOAA4uEAABTsxmXoFbe8CoCkMcrUBligmM1mXf2VQ2yALLYwuAN9XBQwKLtN2kbJzGgFe2gloodSzJRjqXIFVoTP2NW7NPmyLD0uxPkhmWA1XiWg5HIIxGbgAbIlvQodEc54rZTAFQ8L3U4l8cu1h7XghBFC+B5CqPggZhrRheVd3BommNBiXiK3Ev0SqS0yreMmVQLOXLLrVnxFw6zKFnAvxOXcGV4ojRbwTNJ92nAA27XO8QMBWNI2vkHxHmEG/2syz9keglFjFiPtLVmYuVs+Z3c7xHG85qQIEgBb8+yFEwtbWMruZITNTYPtK2wQBZnmB2bqFn5ltWBR4uGzoK1gWJlDhBboNjAw/R84QvnwCGfFEHuhdNB1jcsqjINj3ZmWtZoO2E4HFgLjgoVpRAS0NBg0T0h4P5iUA8yBscdXM/V8gRV4xbVFxZ16OaVdNNymeyAcTnRBH5BcGWLthqkZQqtEX3bH9IChIxRL/AKglDLxhnuEfxHFhYKTuxft1A9AMgOA4PHqcswbDO9D3ZSKI88LDeCafM+quY0xfZXBSpuaHPUdW7l0cXRMvtEElKPTD3itqhwVV3K1oMJkqcW2+ZUpEGBUCi3EERnX6kl+e7r9Zi6P824pLU3Y/uPmh2spxxH3eH0IHKID9wLCcC+0LLSI4Z1MnGlxIBzeb/ESywDIzuI1Gr3PPHWynpmFB7MA7XiUbC4BS6CZwnil+0cA81z8pXoC0Wsc/3BG45nfcb5B0XmNE7CW1FBAp70j5pHhiX85FgwL1CjRtZf0sJpkJeKIWMWimJ7wZvV/Q9C3MRTYu9oFVbBEgpY36GqzDAqDdsTYg5eUWmm4NQSgBoIJdV/5LbTE+8W37TAymd+xiz7GZ65CGi6gAbzUc78FL0rgRF+0Y5P3ghvPWN3iXMlMUojryT8xsNW3EsUaKWsdQ8Vv/AGWCUgaQ/aD2Y6X9TCCdEr8SodAAhKmiMviDlVAeYRQ6OGMgsFZQ6Uv6RP4HXzH5DqhcWxBtOV7OPeMVWtpteYVBIOXT2YXLaUkbKy1UYoHAdL6tj6jd75u8beGs15iAvMvZ7ufLvaNAJzdxY0axma+d2SoVYcByX4hB7RYnsuYytdqP9mcIbOHqNo0APTcZJtQ/UNcQSvOI0yAyXdKs3q/BxK2p/wBMFRureFiyMGwTDBFKd7li8kFOoA0zshtfCSibusuyfiTA2kBUNDlIMfAPRniXBiYMqRcBsW+ZdkfOEGcxPhELALmeYIBFQgGHvCdODa/EYNfwU5+YKslsOyL5dtiui+Wc/YtxclnmGFnlyr3SbIIon2YEpyEldrt+KY8ZP+HDZ8tsEJhg/wCw+8rDWtUtzvMJNCWNQSGc1FGQcGWAAQN21C4OeY+6ICe0LXHV3HqtFyQaWX3N3VDfcxFyU/M0TADXMxqUy4nvJiKlLG/hLXxpP1E+y/6hoSK1bPttR4VMCcMQhj3mxZxC09VKGaamNB43EIl4ayvsS0Iq/lQJStemARLai1F5Q4YdxW4uR3FVF1llliU5tSz6mAueVB9iDdcVKF9pT3h+V94GoaLW5f1AHVxvTaLWCQ3rhHQLQdy6C6aOpUQS4CoJTqIsHhZgBBdOWA8sUd6gxsbDlmckWDBeydJeAhWWM3MS4sPfMUniZs3G8hUwnaoFHy/yO184Gx4Ewh3Dh4gDl8S6G9wsimIRXdxZeSph0vREQ2UQc04hmhbMNu3sr4MFeaZMvcMczG5xIi8wiY9JoMYCWnqP2moyj+4ogo03GFOMb+UdWBQtglqFoUMizGBmFRdxZlJdwxb48kqBGHbGS1FFQJRgZLVAATsqP9+OEVI1e0shSuRgKlHlCmdeGK4gKC13Cw2U0eYnZywbl0oPV7pLlwaTouK5umVHRgHc6lCrdxXV8w0eyXazCvuDR5gLeqmiOWoSrurlOwpkOUzHq4gDp7RF11NDHazg6nEmYBsYyxMRige7iIZifDQGBgTOb1DmAF2mo6h0ZKbhq47V7iw0K6Oj/tR+EGgt4lAMdiiFO670QT1Ba0Ya9yxReIFdHrUD1u8trqEFo5HJAzxpvcc5LPJFUlLG0bzFAgQvDDqtsOY1BjtqX51fxAU/UGvYl8BgGGhaqZR0zP3YyQ7YqjvH7hzZBbbiph0Q85Ug3LyGuYQTwRgArUXvnip//9k=
Ε-mail: gmpardis (at) uop (dot) gr
Τηλέφωνο:
Γραφείο: Α6 | 1ος όροφος, Κτήριο Βαλιώτη
Ώρες Γραφείου: Πέμπτη 13:00 - 15:00 Παρασκευή 12:00 - 14:00 - (Συνιστάται πρότερη επικοινωνία με το διδάσκοντα)
Σύντομο Βιογραφικό Σημείωμα

Ο Δρ. Γεώργιος Μπάρδης υπηρετεί ως Λέκτορας Εφαρμογών στο Τμήμα Ψηφιακών Συστημάτων της Σχολής Οικονομίας και Τεχνολογίας του Πανεπιστημίου Πελοποννήσου. Είναι Διπλωματούχος Μηχανικός Υπολογιστών και Πληροφορικής του Πανεπιστημίου Πατρών (2002), κάτοχος Μεταπτυχιακού Διπλώματος (M.Sc.) του Εθνικού Μετσόβιου Πολυτεχνείου (2005) και Διδακτορικού Διπλώματος (Ph.D.) του Εθνικού Μετσόβιου Πολυτεχνείου (2009). Το αντικείμενο της διδακτορικής του διατριβής εστιάστηκε στη μοντελοποίηση, ανάλυση και βελτιστοποίηση επιχειρησιακών διαδικασιών με χρήση BPMN, καθώς και στην Καθοδηγούμενη Βελτιστοποίηση στις Αστικές Μεταφορές.

Ο Δρ. Μπάρδης εφαρμόζει με επιτυχία την ακαδημαϊκή του εξειδίκευση σε έργα υψηλής επιχειρησιακής αξίας, με έντονη εφαρμοσμένη δραστηριότητα:

  • Συμμετοχή σε πλήθος ερευνητικών και αναπτυξιακών έργων σε εθνικό και ευρωπαϊκό επίπεδο.
  • Σχεδιασμός και υλοποίηση καινοτόμων πληροφοριακών συστημάτων στον χώρο των αστικών μεταφορών και της διαχείρισης τουριστικών μεταφορών και εκδρομών, με στόχο την ολοκληρωμένη υποστήριξη των επιχειρησιακών διαδικασιών στον χώρο του τουρισμού.
  • Διεθνής Επιχειρηματική Απήχηση: Τα συστήματα αυτά έχουν λάβει παγκόσμιες διακρίσεις και παρουσιάζουν εκτεταμένη επιχειρηματική παρουσία σε πέντε (5) χώρες, τεκμηριώνοντας τη λειτουργική ωριμότητα και τη διεθνή απήχηση των υπηρεσιών.
  • Σχεδίασε και ανέπτυξε το έργο της Απογραφής Πληθυσμού–Κατοικιών 2021 σε πανελλαδικό επίπεδο, σε συνεργασία με την ΕΛΣΤΑΤ.

Το ερευνητικό και επιστημονικό του έργο περιλαμβάνει σημαντικό αριθμό επιστημονικών δημοσιεύσεων σε διεθνή περιοδικά, πρακτικά συνεδρίων με κριτές και συλλογικούς τόμους, με περισσότερες από 20 επιστημονικές εργασίες. Είναι συγγραφέας του βιβλίου «Μελέτες – Εφαρμογές και Υλοποίηση Δικτύων Η/Υ» και κάτοχος των επαγγελματικών πιστοποιήσεων CCNA και CCNP.

Short CV

Dr. Georgios Bardis serves as a Lecturer of Applied Sciences at the Department of Digital Systems, School of Economics and Technology, University of the Peloponnese. He holds a B.Sc. in Computer Engineering and Informatics from the University of Patras (2002), an M.Sc. degree from the National Technical University of Athens (2005), and a Ph.D. from the National Technical University of Athens (2009). His doctoral dissertation focused on the modeling, analysis, and optimization of business processes using BPMN, as well as on Guided Optimization in Urban Transportation.

Dr. Bardis successfully applies his academic expertise to projects of high business value, demonstrating strong applied activity:

• Participation in a large number of research and development (R&D) projects at national and European levels.
Design and development of innovative information systems in the field of urban transportation and tourism transport management and excursions, aiming at the comprehensive support of business processes in the tourism sector.
International Business Impact: These systems have received global distinctions and demonstrate an extensive operational presence in five (5) countries), documenting their functional maturity and international reach.
Designed and developed the National Population–Housing Census 2021 project at a nationwide level, in collaboration with ELSTAT (Hellenic Statistical Authority).

His research and scientific work includes a significant number of publications in international journals, peer-reviewed conference proceedings, and edited volumes, with more than 20 scientific publications. He is the author of the book “Studies – Applications and Implementation of Computer Networks” and holds the professional certifications CCNA and CCNP.

Γνωστικό Αντικείμενο:
Επιστημονικά Ενδιαφέροντα:

Το μεγαλύτερο μέρος της ερευνητικής του δραστηριότητας εστιάζει στη μοντελοποίηση, ανάλυση και αξιολόγηση επιχειρησιακών διαδικασιών με τη χρήση της μεθοδολογίας BPMN (Business Process Model and Notation). Στόχος της έρευνάς του είναι η συστηματική αποτύπωση και βελτιστοποίηση επιχειρησιακών ροών, μέσω της αξιοποίησης δεικτών απόδοσης (Key Performance Indicators – KPIs) που αφορούν τον χρόνο, την ποιότητα και την ποσότητα.

Μέσα από την ανάλυση των παραπάνω δεικτών, επιδιώκεται ο εντοπισμός δυσλειτουργιών, καθυστερήσεων και σημείων συμφόρησης στις επιχειρησιακές διαδικασίες, καθώς και η εξαγωγή τεκμηριωμένων και στοχευμένων προτάσεων βελτίωσης.

Οι προτάσεις αυτές εδράζονται σε τέσσερις βασικούς άξονες:

  • τη βέλτιστη αξιοποίηση του ανθρώπινου δυναμικού,

  • τον σχεδιασμό και την υλοποίηση προγραμμάτων εκπαίδευσης και κατάρτισης,

  • την υιοθέτηση σύγχρονων μεθοδολογιών διοίκησης και οργάνωσης,

  • τη στρατηγική ενσωμάτωση νέων τεχνολογιών στις επιχειρησιακές λειτουργίες.

Παράλληλα, τα ερευνητικά του ενδιαφέροντα επεκτείνονται στον τομέα του Fintech, με έμφαση στις εφαρμογές των ψηφιακών τεχνολογιών στον χρηματοπιστωτικό τομέα, καθώς και στην Καθοδηγούμενη Βελτιστοποίηση στις Αστικές Μεταφορές, μέσω της αξιοποίησης του BPMN για τη συστηματική βελτίωση των λειτουργιών στον τομέα των μεταφορών.

Η ερευνητική του προσέγγιση συνδυάζει ποσοτικές και ποιοτικές μεθόδους ανάλυσης, με στόχο τη βελτίωση της αποδοτικότητας, της ευελιξίας και της ανταγωνιστικότητας των οργανισμών.

Science Interest:

Most of his research activity focuses on the modeling, analysis, and evaluation of business processes using the BPMN (Business Process Model and Notation) methodology. The main objective of his research is the systematic documentation and optimization of business workflows, through the use of Key Performance Indicators (KPIs) related to time, quality, and quantity.

Through the analysis of these indicators, the aim is to identify malfunctions, delays, and bottlenecks in business processes, as well as to develop well-documented and targeted improvement proposals.

These proposals are built upon four main pillars:

  • the optimal utilization of human resources,

  • the design and implementation of education and training programs,

  • the adoption of modern management and organizational methodologies,

  • the strategic integration of new technologies into business operations.

At the same time, his research interests extend to the field of Fintech, with a focus on the application of digital technologies in the financial sector, as well as to Guided Optimization in Urban Transport, through the use of BPMN for the systematic improvement of processes in the transportation sector.

His research approach combines quantitative and qualitative analysis methods, aiming at the improvement of efficiency, flexibility, and competitiveness of organizations.